Détail de l'auteur
Auteur Naeim Mijani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatial modeling of migration using GIS-based multi-criteria decision analysis: A case study of Iran / Naeim Mijani in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Spatial modeling of migration using GIS-based multi-criteria decision analysis: A case study of Iran Type de document : Article/Communication Auteurs : Naeim Mijani, Auteur ; Davoud Shahpari Sani, Auteur ; Mohsen Dastaran, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 645 - 668 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] approche hiérarchique
[Termes IGN] changement climatique
[Termes IGN] coefficient de corrélation
[Termes IGN] combinaison linéaire ponderée
[Termes IGN] données démographiques
[Termes IGN] données socio-économiques
[Termes IGN] Iran
[Termes IGN] migration humaine
[Termes IGN] modélisation spatiale
[Termes IGN] planification urbaine
[Termes IGN] système d'information géographiqueRésumé : (auteur) Spatial modeling of migration and the identification of the effective parameters are imperative for planning and managing demographic, economic, social, and environmental changes on various geographical scales. The recent climate change stressors as well as inequality in terms of education and life quality have triggered internal mass migrations in Iran, causing pressure on housing, the job market, and potential slums around large cities. This study proposes a new approach to modeling migration patterns in Iran based on multi-criteria decision analysis. For this purpose, a total of 23 individual criteria embedded within four criteria groups (economic, socio-cultural, welfare, and environmental) affecting national migration were used. The analytic hierarchy process was employed to determine weights for the input factors and the weighted linear combination (WLC) model was used for the integration of criteria, based on which maps of migration potential were produced. The model applied was evaluated based on the correlation coefficient between migration potential values obtained from the WLC model and the actual net migration rate. Among the input individual criteria, unemployment, higher education centers, number of physicians, and dust storms were found to influence national migration. Furthermore, our findings reveal that the potential for migration across Iranian provinces is heterogeneous, with the spatial potential for emigration being the highest and lowest in the border and central provinces, respectively. The correlation coefficient calculated between outputs from the WLC model and the net migration rate from 2011 to 2016, was .81, indicating the relatively high performance of the proposed model in producing a migration spatial potential map. Our proposed approach, along with the results achieved, can be useful to decision-makers and planners in designing data-driven policies against inequality- and climate-induced stressors. Numéro de notice : A2022-363 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12873 Date de publication en ligne : 23/11/2021 En ligne : https://doi.org/10.1111/tgis.12873 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100582
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 645 - 668[article]