Détail de l'auteur
Auteur Meng-Hao Guo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Attention mechanisms in computer vision: A survey / Meng-Hao Guo in Computational Visual Media, vol 8 n° 3 (September 2022)
[article]
Titre : Attention mechanisms in computer vision: A survey Type de document : Article/Communication Auteurs : Meng-Hao Guo, Auteur ; Tian-Xing Xu, Auteur ; Jiang-Jiang Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 331 - 368 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] saillance
[Termes IGN] scèneRésumé : (auteur) Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multimodal tasks, and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention, and branch attention; a related repository https://github.com/MenghaoGuo/Awesome-Vision-Attentions is dedicated to collecting related work. We also suggest future directions for attention mechanism research. Numéro de notice : A2022-329 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s41095-022-0271-y Date de publication en ligne : 15/03/2022 En ligne : https://doi.org/10.1007/s41095-022-0271-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100601
in Computational Visual Media > vol 8 n° 3 (September 2022) . - pp 331 - 368[article]