Détail de l'auteur
Auteur Jonata Tyska Carvalho |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
HiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
[article]
Titre : HiPerMovelets: high-performance movelet extraction for trajectory classification Type de document : Article/Communication Auteurs : Tarlis Tortelli Portela, Auteur ; Jonata Tyska Carvalho, Auteur ; Vania Bogorny, Auteur Année de publication : 2022 Article en page(s) : pp 1012 - 1036 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification
[Termes IGN] exploration de données géographiques
[Termes IGN] jeu de données localisées
[Termes IGN] trace numérique
[Termes IGN] trajet (mobilité)Résumé : (auteur) In the last decade, trajectory classification has received significant attention. The vast amount of data generated on social media, the use of sensor networks, IOT devices and other Internet-enabled sources allowed the semantic enrichment of mobility data, making the classification task more challenging. Existing trajectory classification methods have mainly considered space, time and numerical data, ignoring the semantic dimensions. Only recently proposed methods as Movelets and MASTERMovelets can handle all types of dimensions. MASTERMovelets is the only method that automatically discovers the best dimension combination and subtrajectory size for trajectory classification. However, although it outperformed the state-of-the-art in terms of accuracy, MASTERMovelets is computationally expensive and results in a high dimensionality problem, which makes it unfeasible for most real trajectory datasets that contain a big volume of data. To overcome this problem and enable the application of the movelets approach on large datasets, in this paper we propose a new high-performance method for extracting movelets and classifying trajectories, called HiPerMovelets (High-performance Movelets). Experimental results show that HiPerMovelets is 10 times faster than MASTERMovelets, reduces the high-dimensionality problem, is more scalable, and presents a high classification accuracy in all evaluated datasets with both raw and semantic trajectories. Numéro de notice : A2022-332 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2021.2018593 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1080/13658816.2021.2018593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100608
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 1012 - 1036[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022051 SL Revue Centre de documentation Revues en salle Disponible