Détail de l'auteur
Auteur Kezhen Yao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China / Kezhen Yao in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
[article]
Titre : Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China Type de document : Article/Communication Auteurs : Kezhen Yao, Auteur ; Saini Yang, Auteur ; Shengnan Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dispersion
[Termes IGN] effondrement de terrain
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] régression linéaire
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Landslide susceptibility assessment serves as a critical scientific reference for geohazard control, land use, and sustainable development planning. The existing research has not fully considered the potential impact of the spatial agglomeration and dispersion of landslides on assessments. This issue may cause a systematic evaluation bias when the field investigation data are insufficient, which is common due to limited human resources. Accordingly, this paper proposes two novel strategies, including a clustering algorithm and a preprocessing method, for these two ignored features to strengthen assessments, especially in high-susceptibility regions. Multiple machine learning models are compared in a case study of the city of Bijie (Guizhou Province, China). Then we generate the optimal susceptibility map and conduct two experiments to test the validity of the proposed methods. The primary conclusions of this study are as follows: (1) random forest (RF) was superior to other algorithms in the recognition of high-susceptibility areas and the portrayal of local spatial features; (2) the susceptibility map incorporating spatial feature messages showed a noticeable improvement over the spatial distribution and gradual change of susceptibility, as well as the accurate delineation of critical hazardous areas and the interpretation of historical hazards; and (3) the spatial distribution feature had a significant positive effect on modeling, as the accuracy increased by 5% and 10% after including the spatial agglomeration and dispersion consideration in the RF model, respectively. The benefit of the agglomeration is concentrated in high-susceptibility areas, and our work provides insight to improve the assessment accuracy in these areas, which is critical to risk assessment and prevention activities. Numéro de notice : A2022-371 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11050269 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.3390/ijgi11050269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100613
in ISPRS International journal of geo-information > vol 11 n° 5 (May 2022) . - n° 269[article]