Détail de l'auteur
Auteur Aaron Judah |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands / Aaron Judah in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
[article]
Titre : The integration of multi-source remotely sensed data with hierarchically based classification approaches in support of the classification of wetlands Type de document : Article/Communication Auteurs : Aaron Judah, Auteur ; Baoxin Hu, Auteur Année de publication : 2022 Article en page(s) : pp 158 - 181 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image Sentinel-SAR
[Termes IGN] intégration de données
[Termes IGN] modèle numérique de terrain
[Termes IGN] précision de la classification
[Termes IGN] tourbière
[Termes IGN] utilisation du sol
[Termes IGN] zone humideRésumé : (auteur) Methodologies were developed to classify wetlands (Open Bog, Treed Bog, Open Fen, Treed Fen, and Swamps) from remotely sensed data using advanced classification algorithms through two hierarchical approaches. The data utilized included multispectral optical and thermal data (Landsat-5, and Landsat-8), radar imagery (Sentinel-1), and a digital elevation model. Goals were to determine the best way to combine imagery to classify wetlands through hierarchically based classification approaches to produce more accurate and efficient maps compared to standard classification. Algorithms used were Random Forest (RF), and Naïve Bayes. A hierarchically based RF classification methodology produced the most accurate classification result (91.94%). The hierarchically based approaches also improved classification accuracies for low-quality data, as defined through feature analysis, when compared to a nonhierarchical classifier. The hierarchical approaches also produced a significant increase in classification accuracy for the Naïve Bayes classifier versus the standard approach (∼12% increase) while not significantly increasing computation time – comparable in accuracy to the RF tests for around 20% the computational effort. Preselection of spectral bands, polarizations and other input parameters (Normalized Difference Vegetation Index, Normalized Difference Water Index, albedo, slope, etc.) using log-normal or RF variable importance analysis was very effective at identifying low-quality features and features which were of higher quality. Numéro de notice : A2022-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/07038992.2021.1967732 Date de publication en ligne : 13/11/2021 En ligne : https://doi.org/10.1080/07038992.2021.1967732 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100614
in Canadian journal of remote sensing > vol 48 n° 2 (April 2022) . - pp 158 - 181[article]