Détail de l'auteur
Auteur Younes Zegaoui |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Détection/reconnaissance d'objets urbains à partir de données 3D multicapteurs prises au niveau du sol, en continu / Younes Zegaoui (2021)
Titre : Détection/reconnaissance d'objets urbains à partir de données 3D multicapteurs prises au niveau du sol, en continu Type de document : Thèse/HDR Auteurs : Younes Zegaoui, Auteur ; Marc Chaumont, Directeur de thèse Editeur : Montpellier : Université de Montpellier Année de publication : 2021 Importance : 182 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade de Docteur de l'Université de Montpellier, spécialité InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] mobilier urbain
[Termes IGN] objet géographique urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaine denseIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le développement des dispositifs d'acquisition LiDAR mobiles terrestres, montés sur véhicule ou drone, rendent possible la numérisation de villes entières sous la forme de nuages de points tridimensionnels géo-référencés. L'exploitation de ces données par les gestionnaires de ville permettent le recensement ainsi que le suivi au cours du temps des objets urbains qu'ils soient fixes (lampadaires, abribus…), mobiles (containers de poubelle) ou naturels (arbres) afin de pouvoir intervenir en cas de disparition, déplacement, détérioration ou de danger potentiel. Cette approche nécessite d'être en mesure de traiter des grands nuages pouvant compter plusieurs centaines de millions de points et réunir des milliers d'objets. Il devient donc nécessaire d'automatiser les traitements appliqués aux nuages de points afin de pouvoir extraire et classer automatiquement les éléments qui correspondent à des objets urbains. La diversité ainsi que le grand nombre d'objets urbains présents dans les villes sont un réel défi pour le développement d'approches automatisées. Dans cette thèse, nous explorons la piste récente de l'apprentissage profond appliqué aux données non structurées pour réaliser la localisation et la reconnaissance automatique d'objets urbains dans un nuage de points 3D. En s'inspirant des avancées récentes permises par le réseau PointNet, nous proposons de réaliser un apprentissage supervisé directement à partir des nuages de points sans passer par des transformations intermédiaires. Nous avons ainsi développé une architecture neuronale 3D que nous avons basée sur une couche originale permettant simultanément de regrouper des points et d'en extraire des caractéristiques. A partir de cette architecture, nous présentons les résultats que nous avons obtenues sur la tâche de détection d'objets urbains dans des nuages de points LiDAR obtenus dans des rues de grandes villes. Note de contenu : 1- Introduction
2- Etat de l’art
3- Architecture par clustering
4- Application à la détection d’objets en milieu urbain
5- Conclusion
6- PerspectivesNuméro de notice : 24108 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de Doctorat : Informatique : Montpellier : 2021 Organisme de stage : Laboratoire LIRMM DOI : sans En ligne : https://tel.hal.science/tel-03589031/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100629