Détail de l'auteur
Auteur Colin Pagani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Quantification probabiliste des taux de déformation crustale par inversion bayésienne de données GPS / Colin Pagani (2021)
Titre : Quantification probabiliste des taux de déformation crustale par inversion bayésienne de données GPS Type de document : Thèse/HDR Auteurs : Colin Pagani, Auteur ; Thomas Bodin, Directeur de thèse ; Cécile Lasserre, Directeur de thèse ; Marianne Metois, Directeur de thèse Editeur : Lyon : Université de Lyon 1 Claude Bernard Année de publication : 2021 Importance : 182 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Lyon opérée au sein de l'Université Claude Bernard Lyon 1, spécialité Géophysique, Discipline Sciences de la TerreLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] champ de vitesse
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] données polarimétriques
[Termes IGN] estimation bayesienne
[Termes IGN] faille géologique
[Termes IGN] inférence statistique
[Termes IGN] inversion
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] risque naturel
[Termes IGN] séisme
[Termes IGN] tectonique des plaques
[Termes IGN] tenseurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Au cours du cycle sismique, la déformation accumulée par la lithosphère terrestre peut être relâchée de manière anélastique lors de séismes provoquant de nombreuses pertes humaines et matérielles. L’analyse du risque sismique passe par l’étude de cette déformation lors des différentes étapes du cycle sismique. En particulier, l’étude géodésique du déplacement de la surface terrestre permet de comprendre et de localiser l’accumulation de la déformation élastique lors des phases intersismiques. Avec l’expansion des réseaux GNSS, il est devenu possible d’obtenir le tenseur du taux de déformation à partir des vitesses de déplacement surfacique dans le but d’étudier et de contraindre la déformation crustale. Or, calculer une surface continue de gradient de déformation à partir de données GNSS discrètes consiste en un problème inverse dont la solution est fortement non-unique. De ce fait, de nombreuses méthodes aux caractéristiques diverses ont vu le jour au cours des dernières décennies, chacune comportant ses avantages et ses inconvénients propres. Cependant, certaines limitations des schémas d’inversion direct employés jusqu’alors persistent et compromettent la fiabilité des résultats. En particulier, la nécessité d’employer des paramètres ad hoc définis par l’opérateur tel qu’un paramètre de lissage, la sensibilité à la géométrie du réseau GNSS et la difficulté à déterminer de manière robuste les incertitudes associées aux résultats, pourtant nécessaires à l’intégration des cartes de déformation dans les méthodes d’analyse du risque sismique. Afin de pallier ces lacunes dans les modèles existants, nous développons une nouvelle méthode bayésienne transdimensionnelle permettant d’inverser des données GNSS discrètes afin d’obtenir le champ 2D continu de vitesse, son gradient et le tenseur de déformation associés. Le champ de vitesse est décrit par une paramétrisation reposant sur la triangulation de Delaunay, et la distribution a posteriori est échantillonnée grâce à un algorithme de Metropolis-Hasting à saut réversible, qui appartient à la classe des McMC. Cet algorithme dispose d’un maillage adaptatif qui prend en compte les hétérogénéités spatiale, de vitesse et de niveau de bruit présentes dans les données. Contrairement aux méthodes d’inversion classiques qui proposent un modèle unique, la solution est une fonction de distribution de probabilité complète pour chaque composante du champ de vitesse de déformation. Des tests synthétiques permettent de comparer l’approche proposée à un schéma d'interpolation en spline bicubique standard. Cette méthode s’avère plus résistante à la présence d’outliers dans les données ainsi qu’à une répartition spatialement hétérogène de celles-ci, tout en fournissant des incertitudes associées aux vitesses et aux taux de déformation récupérés. Elle est ensuite appliquée au sud-ouest des États-Unis, une région fortement étudiée et surveillée, ce qui permet d’obtenir les taux de déformation probabilistes le long des principaux systèmes de failles, y compris celui de San Andreas, à partir de l'inversion des vitesses intersismiques GNSS. Les caractéristiques de plusieurs points clefs de cette région sont représentées grâce à l’exploitation des fonctions de distribution de probabilité a posteriori des différents paramètres inversés. Les limitations actuelles ainsi que les différentes perspectives d’amélioration de cette méthode sont discutées en conclusion de cette thèse. Note de contenu : Introduction générale
1- Méthode : inversion bayésienne du tenseur de déformation
2- Application à des données GNSS synthétiques et au sud-ouest des États-Unis
3- Discussions et perspectives
Conclusion généraleNuméro de notice : 15193 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse française Note de thèse : Thèse de Doctorat : Géophysique : Lyon 1 : 2021 Organisme de stage : Laboratoire LGL DOI : sans En ligne : https://hal.science/tel-03640544v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100631