Détail de l'auteur
Auteur Xi Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Meta-learning based hyperspectral target detection using siamese network / Yulei Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
[article]
Titre : Meta-learning based hyperspectral target detection using siamese network Type de document : Article/Communication Auteurs : Yulei Wang, Auteur ; Xi Chen, Auteur ; Fengchao Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527913 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection de cible
[Termes IGN] espace euclidien
[Termes IGN] filtrage numérique d'image
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal siamois
[Termes IGN] tripletRésumé : (auteur) When predicting data for which limited supervised information is available, hyperspectral target detection methods based on deep transfer learning expect that the network will not require considerable retraining to generalize to unfamiliar application contexts. Meta-learning is an effective and practical framework for solving this problem in deep learning. This article proposes a new meta-learning based hyperspectral target detection using Siamese network (MLSN). First, a deep residual convolution feature embedding module is designed to embed spectral vectors into the Euclidean feature space. Then, the triplet loss is used to learn the intraclass similarity and interclass dissimilarity between spectra in embedding feature space by using the known labeled source data on the designed three-channel Siamese network for meta-training. The learned meta-knowledge is updated with the prior target spectrum through a designed two-channel Siamese network to quickly adapt to the new detection task. It should be noted that the parameters and structure of the deep residual convolution embedding modules of each channel in the Siamese network are identical. Finally, the spatial information is combined, and the detection map of the two-channel Siamese network is processed by the guiding image filtering and morphological closing operation, and a final detection result is obtained. Based on the experimental analysis of six real hyperspectral image datasets, the proposed MLSN has shown its excellent comprehensive performance. Numéro de notice : A2022-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3169970 Date de publication en ligne : 22/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3169970 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100649
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527913[article]