Détail de l'auteur
Auteur Stéphanie Bidon |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Robust GNSS phase tracking using variational bayesian inference Titre original : Méthodes de poursuite robuste de phase pour signaux GNSS basées sur l’inférence bayésienne variationnelle Type de document : Thèse/HDR Auteurs : Fabio Fabozzi, Auteur ; Stéphanie Bidon, Auteur Editeur : Toulouse : Université de Toulouse Année de publication : 2022 Importance : 173 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse, délivré par l'Institut Supérieur de l’Aéronautique et de l’Espace, Spécialité Signal, Image, acoustique et optimisationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] données GNSS
[Termes IGN] filtrage bayésien
[Termes IGN] filtre de Kalman
[Termes IGN] glissement de cycle
[Termes IGN] inférence statistique
[Termes IGN] méthode robuste
[Termes IGN] phase
[Termes IGN] rapport signal sur bruit
[Termes IGN] récepteur GNSS
[Termes IGN] signal GNSSIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In this Ph.D. thesis, we are interested in robust carrier-phase estimation by using Variational Bayesian filtering. Carrier-phase measurement has become a fundamental task in many various engineering applications such as precise point positioning in GNSS (Global Navigation Satellite System). Unfortunately, phase measurements obtained by traditional phase tracking techniques may be strongly affected by the presence of ambiguous phase jumps, known as cycle slips. The latter may strongly impact the performance of the considered phase tracking algorithm leading to, in the worst case, a permanent loss of lock (drop-lock) of the signal. A re-acquistion process is then necessary which afflicts the tracking performance. Therefore, to address this problem, we propose a robust nonlinear filter for carrier-phase tracking based on Restricted Variational Bayes inference. This methodology gives us a closed-form and easy-to-implement expression of the estimator. First, the algorithm is developed only for slow phase dynamics (i.e., first-order loop), then, its order is augmented by estimating a state vector formed by the carrier-phase and its derivatives. The performance of the proposed algorithm is compared with that of conventional techniques such as DPLL (Digital Phase Lock Loop) and KF (Kalman Filter)-based DPLL in terms of precision of estimation (root-mean-square error) and cycle slipping occurrence (mean-time-to-first-slip and cycle slip rate). The comparison is firstly conducted using synthetic data, and then, real GNSS data into a GNSS software-defined-radio receiver. Results show that the proposed method outperforms the conventional linear filters, when the signal-to-noise ratio is low. Note de contenu : Introduction
1- Introduction to GNSS
2- DPLL and robust phase tracking techniques
3- RVB algorithm in case of slow dynamics
4- RVB algorithm in case of high-order dynamics
5- RVB algorithm using real GNSS data
ConclusionNuméro de notice : 15268 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse française Note de thèse : thèse de Doctorat : Signal, Image, acoustique et optimisation : Toulouse : 2022 Organisme de stage : ISAE-ONERA SCANR DOI : sans En ligne : https://depozit.isae.fr/theses/2022/2022_Fabozzi_Fabio.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100684