Détail de l'auteur
Auteur Amin Mahdavi-Meymand |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms Type de document : Article/Communication Auteurs : Marzieh Fadaee, Auteur ; Amin Mahdavi-Meymand, Auteur ; Mohammad Zounemat-Kermani, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 961 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] Inférence floue
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sédimentRésumé : (auteur) The present study investigates the capability of two metaheuristic optimization approaches, namely the Butterfly Optimization Algorithm (BOA) and the Genetic Algorithm (GA), integrated with machine learning models in Suspended Sediment Load (SSL) prediction. The Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) are applied as the predictive data-driven models. Independent input variables, i.e., the water temperature (T), river discharge (Q), and specific conductance (SC) are used for the prediction of SSL based on several statistical indices. The results indicate that the performances of all studied models were close to one another; moreover, the metaheuristic algorithms were found to increase the accuracy of the ANFIS and ANN models for approximately 11.73 percent and 4.30 percent, respectively. In general, the BOA outperformed the GA in enhancing the optimization performance of the learning process in the applied machine learning models. Numéro de notice : A2022-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1753821 Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1753821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100685
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 961 - 977[article]