Détail de l'auteur
Auteur Krithi Ramamritham |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Simulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India / Vaibhav Kumar in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Simulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India Type de document : Article/Communication Auteurs : Vaibhav Kumar, Auteur ; Arnab Jana, Auteur ; Krithi Ramamritham, Auteur Année de publication : 2022 Article en page(s) : pp 1084 - 1099 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] Bombay
[Termes IGN] incendie
[Termes IGN] modèle de régression
[Termes IGN] planification urbaine
[Termes IGN] prévention des risques
[Termes IGN] régression linéaire
[Termes IGN] zone urbaineRésumé : (auteur) The article addresses the void in developing analytical methods concerning to design urban configurations that could reduce fire risks, and, thus, could help in achieving sustainable goals. A novel algorithm is developed to generate alternative Urban Built Form (UBF) models that could be less susceptible to fire compared to the existing built-form. Fire susceptibility of a generated UBF is predicted using a developed linear regression model. The algorithm considers existing regulations to derive rules and develop scenarios that might be effective in building fire-resilient cities. The outcomes of the simulations showed a significant decrease in the fire susceptibility of the southern region of Mumbai city. Moreover, for a certain simulated scenario the predicted UBF could accommodate twice the current population while being less susceptible than the existing UBF. The proposed techniques and methods can act as a decision-making tool in taking pre-emptive planning measures to develop fire resilient cities. Numéro de notice : A2022-395 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1756463 Date de publication en ligne : 28/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756463 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100689
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1084 - 1099[article]