Détail de l'auteur
Auteur Gao Maribe |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An informal road detection neural network for societal impact in developing countries / Inger Fabris-Rotelli in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
[article]
Titre : An informal road detection neural network for societal impact in developing countries Type de document : Article/Communication Auteurs : Inger Fabris-Rotelli, Auteur ; Abraham Wannenburg, Auteur ; Gao Maribe, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 267 - 274 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] Afrique du sud (état)
[Termes IGN] apprentissage profond
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] extraction du réseau routier
[Termes IGN] image satellite
[Termes IGN] impact social
[Termes IGN] pays en développement
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Roads found in informal settlements arise out of convenience, and are often not recorded or maintained by authorities. This complicates service delivery, sustainable development and crisis mitigation, including management and tracking of COVID-19. We, therefore, aim to extract informal roads in remote sensing images. Existing techniques aiming at the extraction of formal roads are not suitable for the problem due to the complex physical and spectral properties of informal roads. The only existing approaches for informal roads, namely (Nobrega et al., 2006, Thiede et al., 2020), do not consider neural networks as a solution. Neural networks show promise in overcoming these complexities. However, they require a large amount of data to learn, which is currently not available due to the expensive and time-consuming nature of collecting such data. This paper implements a neural network to extract informal roads from a data set digitised by this research group. Data quality is assessed by calculating validity completeness, homogeneity and the V-measure, a measure of consistency, in order to evaluate the overall usability of the dataset for neural network informal road detection. We implement the GANs-UNet model that obtained the highest F1-score in a 2020 review paper (Abdollahi et al., 2020) on the state-of-the-art deep learning models used to extract formal roads. The results indicate that the model is able to extract informal roads successfully in the presence of appropriate training data. Numéro de notice : A2022-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-4-2022-267-2022 Date de publication en ligne : 18/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-4-2022-267-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100729
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-4-2022 (2022 edition) . - pp 267 - 274[article]