Détail de l'auteur
Auteur Julien Moras |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Railway lidar semantic segmentation with axially symmetrical convolutional learning / Antoine Manier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : Railway lidar semantic segmentation with axially symmetrical convolutional learning Type de document : Article/Communication Auteurs : Antoine Manier, Auteur ; Julien Moras, Auteur ; Jean-Christophe Michelin , Auteur ; Hélène Piet-Lahanier, Auteur Année de publication : 2022 Article en page(s) : pp 135 - 142 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] scène 3D
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voie ferréeRésumé : (auteur) This paper presents a new deep-learning-based method for 3D Point Cloud Semantic Segmentation specifically designed for processing real-world LIDAR railway scenes. The new approach relies on the use of spatial local point cloud transformations for convolutional learning. These transformations allow an increased robustness to varying point cloud densities while preserving metric information and a sufficient descriptive ability. The resulting performances are illustrated with results on railway data from two distinct LIDAR point cloud datasets acquired in industrial settings. The quality of the extraction of useful information for maintenance operations and topological analysis is pointed together with a noticeable robustness to point cloud variations in distribution and point redundancy. Numéro de notice : A2022-433 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-135-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-135-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100739
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 135 - 142[article]