Détail de l'auteur
Auteur Yitian Zhao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised multi-view CNN for salient view selection and 3D interest point detection / Ran Song in International journal of computer vision, vol 130 n° 5 (May 2022)
[article]
Titre : Unsupervised multi-view CNN for salient view selection and 3D interest point detection Type de document : Article/Communication Auteurs : Ran Song, Auteur ; Wei Zhang, Auteur ; Yitian Zhao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1210 - 1227 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] objet 3D
[Termes IGN] point d'intérêt
[Termes IGN] saillanceRésumé : (auteur) We present an unsupervised 3D deep learning framework based on a ubiquitously true proposition named by us view-object consistency as it states that a 3D object and its projected 2D views always belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled by supervised learning due to the difficulty of collecting sufficient and consistent training data. Our unsupervised multi-view CNN, namely UMVCNN, branches off two channels which encode the knowledge within each 2D view and the 3D object respectively and also exploits both intra-view and inter-view knowledge of the object. It ends with a new loss layer which formulates the view-object consistency by impelling the two channels to generate consistent classification outcomes. The UMVCNN is then integrated with a global distinction adjustment scheme to incorporate global cues into salient view selection. We evaluate our method for salient view section both qualitatively and quantitatively, demonstrating its superiority over several state-of-the-art methods. In addition, we showcase that our method can be used to select salient views of 3D scenes containing multiple objects. We also develop a method based on the UMVCNN for 3D interest point detection and conduct comparative evaluations on a publicly available benchmark, which shows that the UMVCNN is amenable to different 3D shape understanding tasks. Numéro de notice : A2022-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01592-x Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1007/s11263-022-01592-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100771
in International journal of computer vision > vol 130 n° 5 (May 2022) . - pp 1210 - 1227[article]