Détail de l'auteur
Auteur Aliny Aparecida Dos Reis |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Classification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil Type de document : Article/Communication Auteurs : Aliny Aparecida Dos Reis, Auteur ; Steven E. Franklin, Auteur ; Fausto Weimar Acerbi Júnior, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1273 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Brésil
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données météorologiques
[Termes IGN] Eucalyptus (genre)
[Termes IGN] géomorphométrie
[Termes IGN] MNS SRTM
[Termes IGN] plantation forestière
[Termes IGN] rendementRésumé : (Auteur) Digital elevation model (DEM) data were used with climate data to estimate productivity in 19 Eucalyptus plantations in Minas Gerais state, Brazil. Typically, plantation and individual stand growth and productivity estimates, such as Site Index (SI) and Mean Annual Increment (MAI), are based on field measures of height, tree diameter and age. Using a Random Forest modelling approach, SI and MAI were related to: (i) DEM-based geomorphometric variables and (ii) WorldClim historical macro-climatic measures. Three operational SI classes (high, medium and low productivity) in 180 stands were mapped with an overall accuracy of 91.6%. Medium and high productivity sites were the most accurately classified. Low productivity sites had 76.5% producer’s accuracy and 92.9% user’s accuracy, and were the most extensive in the study area. Such sites are considered of high importance from a plantation management perspective since additional forestry operations are likely required to address low productivity and growth. Numéro de notice : A2022-275 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778103 Date de publication en ligne : 19/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778103 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100782
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1256 - 1273[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible