Détail de l'auteur
Auteur Ingolf Kühn |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)
[article]
Titre : Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series Type de document : Article/Communication Auteurs : Maximilian Lange, Auteur ; Hannes Feilhauer, Auteur ; Ingolf Kühn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112888 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] échantillonnage de données
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] prairie
[Termes IGN] série temporelleRésumé : (auteur) Information on grassland land-use intensity (LUI) is crucial for understanding trends and dynamics in biodiversity, ecosystem functioning, earth system science and environmental monitoring. LUI is a major driver for numerous environmental processes and indicators, such as primary production, nitrogen deposition and resilience to climate extremes. However, large extent, high resolution data on grassland LUI is rare. New satellite generations, such as Copernicus Sentinel-2, enable a spatially comprehensive detection of the mainly subtle changes induced by land-use intensification by their fine spatial and temporal resolution. We developed a methodology quantifying key parameters of grassland LUI such as grazing intensity, mowing frequency and fertiliser application across Germany using Convolutional Neural Networks (CNN) on Sentinel-2 satellite data with 20 m × 20 m spatial resolution. Subsequently, these land-use components were used to calculate a continuous LUI index. Predictions of LUI and its components were validated using comprehensive in situ grassland management data. A feature contribution analysis using Shapley values substantiates the applicability of the methodology by revealing a high relevance of springtime satellite observations and spectral bands related to vegetation health and structure. We achieved an overall classification accuracy of up to 66% for grazing intensity, 68% for mowing, 85% for fertilisation and an r2 of 0.82 for subsequently depicting LUI. We evaluated the methodology's robustness with a spatial 3-fold cross-validation by training and predicting on geographically distinctly separated regions. Spatial transferability was assessed by delineating the models' area of applicability. The presented methodology enables a high resolution, large extent mapping of land-use intensity of grasslands. Numéro de notice : A2022-468 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112888 Date de publication en ligne : 13/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112888 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100805
in Remote sensing of environment > vol 277 (August 2022) . - n° 112888[article]