Détail de l'auteur
Auteur Semiha Demirbaş Çağlayana |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 ([01/04/2022])
[article]
Titre : Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery Type de document : Article/Communication Auteurs : Semiha Demirbaş Çağlayana, Auteur ; Ugur Murat Leloglu, Auteur ; Christian Ginzler, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1587 - 1606 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Arbutus unedo
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données multitemporelles
[Termes IGN] Erica (genre)
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt méditerranéenne
[Termes IGN] Genista (genre)
[Termes IGN] gestion forestière durable
[Termes IGN] image Sentinel-MSI
[Termes IGN] maquis
[Termes IGN] Olea europaea
[Termes IGN] TurquieRésumé : (auteur) Essential forest ecosystem services can be assessed by better understanding the diversity of vegetation, specifically those of Mediterranean region. A species level classification of maquis would be useful in understanding vegetation structure and dynamics, which would be an indicator of degradation or succession in the region. Although remote sensing was regularly used for classification in the region, maquis are simply represented as one to three categories based on density or height. To fill this gap, we test the capability of Sentinel-2 imagery, together with selected ancillary variables, for an accurate mapping of the dominant maquis formations. We applied Recursive Feature Selection procedure and used a Random Forest classifier. The algorithm is tested using ground truth collected from site and reached 78% and 93% overall accuracy at species level and physiognomic level, respectively. Our results suggest species level characterization of dominant maquis is possible with Sentinel-2 spatial resolution. Numéro de notice : A2022-475 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1783581 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1783581 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100822
in Geocarto international > vol 37 n° 6 [01/04/2022] . - pp 1587 - 1606[article]