Détail de l'auteur
Auteur Jiawei Du |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Segmentation and sampling method for complex polyline generalization based on a generative adversarial network / Jiawei Du in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : Segmentation and sampling method for complex polyline generalization based on a generative adversarial network Type de document : Article/Communication Auteurs : Jiawei Du ; Fang Wu, Auteur ; Ruixing Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4158 - 4180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] échantillonnage de données
[Termes IGN] implémentation (informatique)
[Termes IGN] polyligne
[Termes IGN] rastérisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This paper focuses on learning complex polyline generalization. First, the requirements for sampled images to ensure the effective learning of complex polyline generalization are analysed. To meet these requirements, new methods for segmenting complex polylines and sampling images are proposed. Second, using the proposed segmentation and sampling method, a use case for the learning of complex polyline generalization using the generative adversarial network model, Pix2Pix, is developed. Third, this use case is applied experimentally for the complex generalization of coastline data from a scale of 1:50,000 to 1:250,000. Additionally, contrast experiments are conducted to compare the proposed segmentation and sampling method with object-based and traditional fixed-size methods. Experimental results show that the images generated using the proposed method are superior to the other two methods in the learning and application of complex polyline generalization. The results generalized for the developed use case are globally reasonable and suitably accurate. Numéro de notice : A2022-651 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1878288 Date de publication en ligne : 09/02/2021 En ligne : https://doi.org/10.1080/10106049.2021.1878288 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101473
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4158 - 4180[article]Polyline simplification based on the artificial neural network with constraints of generalization knowledge / Jiawei Du in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
[article]
Titre : Polyline simplification based on the artificial neural network with constraints of generalization knowledge Type de document : Article/Communication Auteurs : Jiawei Du, Auteur ; Jichong Yin, Auteur ; Chengyi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 313 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] descripteur
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] polyligne
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simplification de contour
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The present paper presents techniques for polyline simplification based on an artificial neural network within the constraints of generalization knowledge. The proposed method measures polyline shape characteristics that influence polyline simplification using abstracted descriptors and then introduces these descriptors into the artificial neural network as input properties. In total, 18 descriptors categorized into three types are presented in detail. In a second approach, map simplification principles are abstracted as controllers, imposed after the output layer of the trained artificial neural network to make the polyline simplification comply with these principles. This study worked with three controllers – a basic controller and two knowledge-based controllers. These descriptors and controllers abstracted from generalization knowledge were tested in experiments to determine their efficacy in polyline simplification based on the artificial neural network. The experimental results show that the utilization of abstracted descriptors and controllers can constrain the artificial neural network-based polyline simplification according to polyline shape characteristics and simplification principles. Numéro de notice : A2022-479 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/15230406.2021.2013944 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2013944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100885
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 313 - 337[article]