Détail de l'auteur
Auteur Jens Schneider Von Deimling |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? / Katja Kuhwald in Remote sensing in ecology and conservation, vol 8 n° 3 (June 2022)
[article]
Titre : How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? Type de document : Article/Communication Auteurs : Katja Kuhwald, Auteur ; Jens Schneider Von Deimling, Auteur ; Philipp Schubert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 328 - 346 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Allemagne
[Termes IGN] Baltique, mer
[Termes IGN] carte thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] eaux côtières
[Termes IGN] fond marin
[Termes IGN] herbier marin
[Termes IGN] image aérienne
[Termes IGN] image Sentinel-MSI
[Termes IGN] lidar bathymétrique
[Termes IGN] turbidité des eauxRésumé : (auteur) Seagrass meadows are one of the most important benthic habitats in the Baltic Sea. Nevertheless, spatially continuous mapping data of Zostera marina, the predominant seagrass species in the Baltic Sea, are lacking in the shallow coastal waters. Sentinel-2 turned out to be valuable for mapping coastal benthic habitats in clear waters, whereas knowledge in turbid waters is rare. Here, we transfer a clear water mapping approach to turbid waters to assess how Sentinel-2 can contribute to seagrass mapping in the Western Baltic Sea. Sentinel-2 data were atmospherically corrected using ACOLITE and subsequently corrected for water column effects. To generate a data basis for training and validating random forest classification models, we developed an upscaling approach using video transect data and aerial imagery. We were able to map five coastal benthic habitats: bare sand (25 km²), sand dominated (16 km²), seagrass dominated (7 km²), dense seagrass (25 km²) and mixed substrates with red/ brown algae (3.5 km²) in a study area along the northern German coastline. Validation with independent data pointed out that water column correction does not significantly improve classification results compared to solely atmospherically corrected data (balanced overall accuracies ~0.92). Within optically shallow waters (0–4 m), per class and overall balanced accuracies (>0.82) differed marginally depending on the water depth. Overall balanced accuracy became worse ( Numéro de notice : A2022-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.246 Date de publication en ligne : 07/12/2021 En ligne : https://doi.org/10.1002/rse2.246 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100995
in Remote sensing in ecology and conservation > vol 8 n° 3 (June 2022) . - pp 328 - 346[article]