Détail de l'auteur
Auteur Noé Pion |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Investigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)
[article]
Titre : Investigating the role of image retrieval for visual localization Type de document : Article/Communication Auteurs : Martin Humenberger, Auteur ; Yohann Cabon, Auteur ; Noé Pion, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 1811 - 1836 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] base de données d'images
[Termes IGN] estimation de pose
[Termes IGN] flou
[Termes IGN] localisation basée image
[Termes IGN] localisation basée vision
[Termes IGN] point de repère
[Termes IGN] précision de localisation
[Termes IGN] Ransac (algorithme)
[Termes IGN] réalité de terrain
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization. Numéro de notice : A2022-538 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01615-7 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1007/s11263-022-01615-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101070
in International journal of computer vision > vol 130 n° 7 (July 2022) . - 1811 - 1836[article]