Détail de l'auteur
Auteur Seda Şalap-Ayça |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Self-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization / Seda Şalap-Ayça in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : Self-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization Type de document : Article/Communication Auteurs : Seda Şalap-Ayça, Auteur Année de publication : 2022 Article en page(s) : pp 1718 - 1734 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] analyse de sensibilité
[Termes IGN] carte de Kohonen
[Termes IGN] représentation spatiale
[Termes IGN] réseau neuronal artificiel
[Termes IGN] visualisation cartographique
[Termes IGN] voisinage (relation topologique)
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Spatial global sensitivity analysis (SGSA) reveals and ranks the input–output relation in spatial models. The SGSA output is twofold: (1) first-order effects which are the linear relations of every input layer with the output; and (2) high-order effects where the nonlinear interaction among input layers is depicted. The resulting sensitivity maps are twice the number of input layers which is challenging to visualize, considering the limitations of the human cognitive system or visual representations. Finding similar patterns and projecting that similarity into a 2D surface will help to tackle this voluminous visual load. This article presents the implementation of self-organizing maps (SOM), a type of artificial neural network, as a dimension reduction approach for SGSA visualization. SOM is also used for feature selection to identify the most relevant feature for model uncertainty. The winning neurons at SOM are projected as the influence map and the results are compared with conventional visualization techniques. Numéro de notice : A2022-532 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12963 Date de publication en ligne : 21/06/2022 En ligne : https://doi.org/10.1111/tgis.12963 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101080
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1718 - 1734[article]