Détail de l'auteur
Auteur Hamza Issa |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Non-linear GNSS signal processing applied to land observation with high-rate airborne reflectometry / Hamza Issa (2022)
Titre : Non-linear GNSS signal processing applied to land observation with high-rate airborne reflectometry Type de document : Thèse/HDR Auteurs : Hamza Issa, Auteur ; Serge Reboul, Directeur de thèse ; Ghaleb Faour, Directeur de thèse Editeur : Dunkerque : Université du Littoral-Côte-d'Opale Année de publication : 2022 Importance : 213 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du grade de Docteur de l’Université du Littoral Côte d’OpaleLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] capteur aérien
[Termes IGN] données radar
[Termes IGN] humidité du sol
[Termes IGN] modèle statistique
[Termes IGN] précision métrique
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GNSS
[Termes IGN] zone humideIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Soil moisture remote sensing has been an active area of research over the past few decades due to its essential role in agriculture and in the prediction of some natural disasters. GNSS-Reflectometry (GNSS-R) is an emerging bistatic remote sensing technique that uses the L-band GNSS signals as sources of opportunity to characterize Earth surface. In this passive radar system, the amplitudes of the GNSS signal reflected by soil and the GNSS signal received directly from the GNSS satellites can be used to derive measurements of reflectivity from which the soil moisture content of the surface is determined.The study of soil moisture content using reflectivity measurements can also be applied for the detection of in-land water body surfaces. In this dissertation, we propose in the first step a non-linear estimate of the GNSS signal amplitude. This estimate is based on a statistical model that we develop for the coherent detection of a GNSS signal quantized on 1 bit. We show with experimentations on synthetic and real data that the proposed estimator is more accurate than reference approaches and provide measurements of the Signal-to-Noise Ratio (SNR) at a higher rate. When the reflected GNSS signal is obtained in an airborne experiment, its evolution as a function of time is piecewise stationary. The different stationary parts are associatedto different kinds of reflecting surfaces. We propose in a second step a change point detector that takes into account the radar signal characteristics in order to segment the signal. We show on synthetic data that the proposed change point detector can detect and localize changes more accurately than reference approaches present in the literature. This work is applied to airborne GNSSR observation of Earth. We propose in the third step, a new GNSS-R sensor with its implementation on a lightweight airborne carrier. We also propose a new front-end receiver architecture, a software radio implementation of thereceiver, and the complete instrumentation of the airborne carrier. A real flight experimentation has taken place in the North of France obtaining reflections from different landforms. We show using the airborne GNSS measurements obtained, that the proposed radar technique detects different surfaces along the flight trajectory, and in particular in-land water bodies, with high temporal and spatial resolution. We also show that we can localize the edges of the detected water body surfaces at meter accuracy. Note de contenu : General Introduction
1. Remote Sensing of Soil Moisture
1.1 Introduction
1.2 L-band emissions of land covers
1.3 Soil moisture remote sensing techniques
1.4 Remote sensing using GNSS-R
1.5 Conclusion
2. Carrier-to-Noise Estimation : Application to Soil Moisture Retrieval using GNSS-R
2.1 Introduction
2.2 Signal and system model
2.3 C/N0 estimators
2.4 Soil moisture retrieval from GNSS-R
2.5 Conclusion
3. A Probabilistic Model for On-line Estimation of the GNSS Carrier?to-Noise Ratio
3.1 Introduction
3.2 1-bit coherent detection principle
3.3 GNSS front end
3.4 Estimation of the GNSS signal amplitude
3.5 Experimentation
3.6 Conclusion
4. Segmentation of the GNSS Signal Amplitudes
4.1 Introduction
4.2 Change point detection principle
4.3 On-line/Off-line change detection system
4.4 Experimentation
4.5 Conclusion
5. Airborne GNSS Reflectometry for Water Body Detection
5.1 Introduction
5.2 Airborne GNSS system
5.3 Airborne experimental setup
5.4 GNSS-R software receiver
5.5 Flight Experimentation
5.6 Data analysis
5.7 Conclusion
General ConclusionNuméro de notice : 26837 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du signal et des images : Université du Littoral Côte d’Opale : 2022 Organisme de stage : Laboratoire d'Informatique Signal et Image de la Côte d'Opale LISIC nature-HAL : Thèse DOI : sans Date de publication en ligne : 03/06/2022 En ligne : https://tel.hal.science/tel-03687353 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101094