Détail de l'auteur
Auteur Liguo Lu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test / Liye Ma in GPS solutions, vol 26 n° 4 (October 2022)
[article]
Titre : GNSS best integer equivariant estimation combining with integer least squares estimation: an integrated ambiguity resolution method with optimal integer aperture test Type de document : Article/Communication Auteurs : Liye Ma, Auteur ; Yidong Lou, Auteur ; Liguo Lu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] méthode des moindres carrés
[Termes IGN] phase GNSS
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) Accurate and reliable carrier phase ambiguity resolution (AR) is the key to global navigation satellite system (GNSS) high-precision navigation and positioning applications. The integer least squares (ILS) estimation and the best integer equivariant (BIE) estimation are two widely used AR method, with the former considered to have the highest success rate and the latter to be optimal in the minimum mean squared error (MSE) sense. We analyzed three key issues of applying the BIE method in detail, including the use boundary of BIE, the number of candidates to be involved, and the weight determination among ambiguity candidates. It has been demonstrated that the BIE estimator is superior to ILS estimator from an overall perspective, but not always the best in each specific epoch. Therefore, we recommend constructing an integrated ambiguity resolution scheme that combines BIE with ILS, and we propose to adopt the optimal integer aperture (OIA) test as a criterion to distinguish the two. Moreover, a new criterion referred to the OIA test is proposed to determine the number of candidates involved in the BIE estimator. We also attempt to add the quadratic forms of baseline residuals into the weight function of BIE, aiming to reach a more accurate estimator. Finally, an integrated AR method that combines ILS with BIE and distinguished by the OIA test is proposed, named OIA-BIE. A set of real-measured vehicle data are tested to evaluate its performance, compared to least squares (LS), ILS, and the original BIE. The results show that the positioning accuracy of OIA-BIE is a little better than BIE, better than ILS, and significantly better than LS. Moreover, the average time consumption of ILS, BIE, and OIA-BIE are also evaluated, with 1.15, 14.62, and 3.71 ms, respectively, and OIA-BIE is four times more efficient than BIE. Numéro de notice : A2022-542 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01285-5 Date de publication en ligne : 03/07/2022 En ligne : https://doi.org/10.1007/s10291-022-01285-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101107
in GPS solutions > vol 26 n° 4 (October 2022) . - n° 100[article]