Détail de l'auteur
Auteur Dave Munger |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling merchantable wood volume using airborne LiDAR metrics and historical forest inventory plots at a provincial scale / Antoine Leboeuf in Forests, vol 13 n° 7 (July 2022)
[article]
Titre : Modeling merchantable wood volume using airborne LiDAR metrics and historical forest inventory plots at a provincial scale Type de document : Article/Communication Auteurs : Antoine Leboeuf, Auteur ; Martin Riopel, Auteur ; Dave Munger, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 985 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] parcelle forestière
[Termes IGN] placette d'échantillonnage
[Termes IGN] Québec (Canada)
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) So far, large-scale projects aiming to map forest attributes using aerial LiDAR data have been developed using ground sample plots acquired synchronously with LiDAR. No large projects have been developed using aerial LiDAR acquired independent of ground sample plot datasets. The goal of this study was to develop and validate large-scale parametric merchantable wood volume estimation models using existing historical ground sample plots. The models can be applied to large LiDAR datasets to map merchantable wood volume as a 10 × 10 m raster. The study demonstrated that a relative density index (RDI) based on a self-thinning equation and dominant height were suitable variables that can be calculated both for ground sample plots and LiDAR datasets. The resulting volume raster showed sound accuracy rates when compared to validation zones: R², 82.25%; RMSE, 13.7 m3/ha; and bias, −4.09 m3/ha. The results show that ground sample plot datasets acquired synchronously with LiDAR can be used to calculate the RDI and dominant height. These variables can consequently be used to map forest attributes over a large area with a high level of accuracy, thus not requiring the implementation of new costly sample plots. Numéro de notice : A2022-547 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13070985 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/f13070985 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101132
in Forests > vol 13 n° 7 (July 2022) . - n° 985[article]