Détail de l'auteur
Auteur Hanwen Xu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images Type de document : Article/Communication Auteurs : Hanwen Xu, Auteur ; Xinming Tang, Auteur ; Bo Ai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4411915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation multi-échelle
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Very-high-resolution (VHR) remote sensing images contain various multiscale objects, such as large-scale buildings and small-scale cars. However, these multiscale objects cannot be considered simultaneously in the widely used backbones with a large downsampling factor (e.g., VGG-like and ResNet-like), resulting in the appearance of various context aggregation approaches, such as fusing low-level features and attention-based modules. To alleviate this problem caused by backbones with a large downsampling factor, we propose a feature-selection high-resolution network (FSHRNet) based on an observation: if the features maintain high resolution throughout the network, a high precision segmentation result can be obtained by only using a 1× 1 convolution layer with no need for complex context aggregation modules. Specifically, the backbone of FSHRNet is a multibranch structure similar to HRNet where the high-resolution branch is the principal line. Then, a lightweight dynamic weight module, named the feature-selection convolution (FSConv) layer, is presented to fuse multiresolution features, allowing adaptively feature selection based on the characteristic of objects. Finally, a specially designed 1× 1 convolution layer derived from hypersphere embedding is used to produce the segmentation result. Experiments with other widely used methods show that the proposed FSHRNet obtains competitive performance on the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the iSAID dataset. Numéro de notice : A2022-559 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3183144 En ligne : https://doi.org/10.1109/TGRS.2022.3183144 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101184
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 4411915[article]