Détail de l'auteur
Auteur Doudou Zeng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Context-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Context-aware network for semantic segmentation toward large-scale point clouds in urban environments Type de document : Article/Communication Auteurs : Chun Liu, Auteur ; Doudou Zeng, Auteur ; Akram Akbar, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] agrégation de détails
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] prise en compte du contexte
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) Point cloud semantic segmentation in urban scenes plays a vital role in intelligent city modeling, autonomous driving, and urban planning. Point cloud semantic segmentation based on deep learning methods has achieved significant improvement. However, it is also challenging for accurate semantic segmentation in large scenes due to complex elements, variety of scene classes, occlusions, and noise. Besides, most methods need to split the original point cloud into multiple blocks before processing and cannot directly deal with the point clouds on a large scale. We propose a novel context-aware network (CAN) that can directly deal with large-scale point clouds. In the proposed network, a local feature aggregation module (LFAM) is designed to preserve rich geometric details in the raw point cloud and reduce the information loss during feature extraction. Then, in combination with a global context aggregation module (GCAM), capture long-range dependencies to enhance the network feature representation and suppress the noise. Finally, a context-aware upsampling module (CAUM) is embedded into the proposed network to capture the global perception from a broad perspective. The ensemble of low-level and high-level features facilitates the effectiveness and efficiency of 3-D point cloud feature refinement. Comprehensive experiments were carried out on three large-scale point cloud datasets in both outdoor and indoor environments to evaluate the performance of the proposed network. The results show that the proposed method outperformed the state-of-the-art representative semantic segmentation networks, and the overall accuracy (OA) of Tongji-3D, Semantic3D, and Stanford large-scale 3-D indoor spaces (S3DIS) is 96.01%, 95.0%, and 88.55%, respectively. Numéro de notice : A2022-561 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3182776 Date de publication en ligne : 13/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3182776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101188
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5703915[article]