Détail de l'auteur
Auteur Rania Shatnawi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Novel hybrid models combining meta-heuristic algorithms with support vector regression (SVR) for groundwater potential mapping / A'Kif Al-Fugara in Geocarto international, vol 37 n° 9 ([15/05/2022])
[article]
Titre : Novel hybrid models combining meta-heuristic algorithms with support vector regression (SVR) for groundwater potential mapping Type de document : Article/Communication Auteurs : A'Kif Al-Fugara, Auteur ; Mohammad Ahmadlou, Auteur ; Rania Shatnawi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2627 - 2646 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] algorithme du recuit simulé
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] carte hydrogéologique
[Termes IGN] eau souterraine
[Termes IGN] Jordanie
[Termes IGN] méthode heuristique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régressionRésumé : (auteur) This study aims to develop three novel GIS-based models combining Genetic Algorithm (GA), Biogeography-Based Optimization (BBO) and Simulated Annealing (SA) with Support Vector Regression (SVR) for groundwater potential (GP) mapping in the governorate of Tafillah, Jordan. Twelve topographical, hydrological and geological factors were considered. The mapping process was done with and without feature selection (FS) conducted by integration of SVR model with GA, BBO and SA algorithms. The accuracy of these models was evaluated using the area under receiver operating characteristic (AUROC) curve. Comparisons among the models uncovered that the SVR-RBF-GA and SVR-RBF-BBO models performed better than the SVR-RBF-SA. The AUROC for two mentioned models were 0.964 and 0.996 in training and testing runs, respectively, while this metric was 0.953 and 0.986 for SVR-RBF-SA model in training and testing runs, respectively. The results showed that after FS, the models are more accurate in test data than train data. Numéro de notice : A2022-567 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1831622 Date de publication en ligne : 19/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1831622 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101250
in Geocarto international > vol 37 n° 9 [15/05/2022] . - pp 2627 - 2646[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022091 RAB Revue Centre de documentation En réserve L003 Disponible