Détail de l'auteur
Auteur Safa Khazai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A new method to detect targets in hyperspectral images based on principal component analysis / Shahram Sharifi Hashjin in Geocarto international, vol 37 n° 9 ([15/05/2022])
[article]
Titre : A new method to detect targets in hyperspectral images based on principal component analysis Type de document : Article/Communication Auteurs : Shahram Sharifi Hashjin, Auteur ; Safa Khazai, Auteur Année de publication : 2022 Article en page(s) : pp 2679 - 2697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse en composantes principales
[Termes IGN] détection de cible
[Termes IGN] estimation de cohérence
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectraleRésumé : (auteur) Target detection (TD) is a major task in hyperspectral image (HSI) processing which, due to the high spectral resolution, requires dealing with the curse of dimensionality. The integrated feature extraction and selection is a well-known solution for dimensionality reduction of HSIs. In this study, a new method is presented to improve the performance of TD algorithms based on principal component analysis (PCA) feature space. In this method, using the implantation of the target spectrum (TS) in the HSI and following the simulated targets in the PCA feature space, the best principal components (PCs) are selected. Then, using the mixing and unmixing coefficients of the PCs, a new TS and a new image in the PCA feature space are created. Afterwards, using the new spectrum of the target, the TD algorithm is run on the new HSI. The performance of the proposed method is compared to nine counterpart algorithms on Hymap and Hyperion HSI. All the comparisons are performed using adaptive coherence estimator (ACE) TD algorithm. Experimental results illustrate that the proposed method, compared to its counterparts, yields superior performance based on the false alarm rate (FAR) measure. It gives an average FAR value of about 16, which is approximately 9% better than that of its best counterparts. Numéro de notice : A2022-568 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1831625 Date de publication en ligne : 01/12/2020 En ligne : https://doi.org/10.1080/10106049.2020.1831625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101251
in Geocarto international > vol 37 n° 9 [15/05/2022] . - pp 2679 - 2697[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022091 RAB Revue Centre de documentation En réserve L003 Disponible