Détail de l'auteur
Auteur Georgy Ayzel |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany / Omar Seleem in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany Type de document : Article/Communication Auteurs : Omar Seleem, Auteur ; Georgy Ayzel, Auteur Année de publication : 2022 Article en page(s) : pp 1640 - 1662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Berlin
[Termes IGN] cartographie des risques
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] inondation
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] vulnérabilitéRésumé : (auteur) Identifying urban pluvial flood-prone areas is necessary but the application of two-dimensional hydrodynamic models is limited to small areas. Data-driven models have been showing their ability to map flood susceptibility but their application in urban pluvial flooding is still rare. A flood inventory (4333 flooded locations) and 11 factors which potentially indicate an increased hazard for pluvial flooding were used to implement convolutional neural network (CNN), artificial neural network (ANN), random forest (RF) and support vector machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial resolutions. (2) Evaluate the trained models' transferability in space. (3) Estimate the most useful factors for flood susceptibility mapping. The models' performance was validated using the Kappa, and the area under the receiver operating characteristic curve (AUC). The results indicated that all models perform very well (minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other models at all spatial resolutions and the RF model at 2 m spatial resolution was superior for the present flood inventory and predictor variables. The majority of the models had a moderate performance for predictions outside the training area based on Kappa evaluation (minimum AUC = 0.8). Aspect and altitude were the most influencing factors on the image-based and point-based models respectively. Data-driven models can be a reliable tool for urban pluvial flood susceptibility mapping wherever a reliable flood inventory is available. Numéro de notice : A2022-457 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2097131 Date de publication en ligne : 12/07/2022 En ligne : https://doi.org/10.1080/19475705.2022.2097131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101257
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 1640 - 1662[article]