Détail de l'auteur
Auteur Oleksandr Karasov |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices / Najmeh Mozaffaree Pour in Environmental Monitoring and Assessment, vol 194 n° 9 (September 2022)
[article]
Titre : Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices Type de document : Article/Communication Auteurs : Najmeh Mozaffaree Pour, Auteur ; Oleksandr Karasov, Auteur ; Iuliia Burdun, Auteur ; Tõnu Oja, Auteur Année de publication : 2022 Article en page(s) : n° 584 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] croissance urbaine
[Termes IGN] Estonie
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat-8
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Over the recent two decades, land use/land cover (LULC) drastically changed in Estonia. Even though the population decreased by 11%, noticeable agricultural and forest land areas were turned into urban land. In this work, we analyzed those LULC changes by mapping the spatial characteristics of LULC and urban expansion in the years 2000–2019 in Estonia. Moreover, using the revealed spatiotemporal transitions of LULC, we simulated LULC and urban expansion for 2030. Landsat 5 and 8 data were used to estimate 147 spectral-textural indices in the Google Earth Engine cloud computing platform. After that, 19 selected indices were used to model LULC changes by applying the hybrid artificial neural network, cellular automata, and Markov chain analysis (ANN-CA-MCA). While determining spectral-textural indices is quite common for LULC classifications, utilization of these continues indices in LULC change detection and examining these indices at the landscape scale is still in infancy. This country-wide modeling approach provided the first comprehensive projection of future LULC utilizing spectral-textural indices. In this work, we utilized the hybrid ANN-CA-MCA model for predicting LULC in Estonia for 2030; we revealed that the predicted changes in LULC from 2019 to 2030 were similar to the observed changes from 2011 to 2019. The predicted change in the area of artificial surfaces was an increased rate of 1.33% to reach 787.04 km2 in total by 2030. Between 2019 and 2030, the other significant changes were the decrease of 34.57 km2 of forest lands and the increase of agricultural lands by 14.90 km2 and wetlands by 9.31 km2. These findings can develop a proper course of action for long-term spatial planning in Estonia. Therefore, a key policy priority should be to plan for the stable care of forest lands to maintain biodiversity. Numéro de notice : A2022-458 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article DOI : 10.1007/s10661-022-10266-7 Date de publication en ligne : 13/07/2022 En ligne : http://dx.doi.org/10.1007/s10661-022-10266-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101258
in Environmental Monitoring and Assessment > vol 194 n° 9 (September 2022) . - n° 584[article]