Détail de l'auteur
Auteur Kunlin Wu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity / Yuhao Kang in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
[article]
Titre : STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity Type de document : Article/Communication Auteurs : Yuhao Kang, Auteur ; Kunlin Wu, Auteur ; Song Gao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1518 - 1549 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse multivariée
[Termes IGN] champ aléatoire de Markov
[Termes IGN] distribution spatiale
[Termes IGN] matrice de covariance
[Termes IGN] matrice de Toeplitz
[Termes IGN] motif séquentiel
[Termes IGN] régionalisation (segmentation)Résumé : (auteur) Spatial clustering has been widely used for spatial data mining and knowledge discovery. An ideal multivariate spatial clustering should consider both spatial contiguity and aspatial attributes. Existing spatial clustering approaches may face challenges for discovering repeated geographic patterns with spatial contiguity maintained. In this paper, we propose a Spatial Toeplitz Inverse Covariance-Based Clustering (STICC) method that considers both attributes and spatial relationships of geographic objects for multivariate spatial clustering. A subregion is created for each geographic object serving as the basic unit when performing clustering. A Markov random field is then constructed to characterize the attribute dependencies of subregions. Using a spatial consistency strategy, nearby objects are encouraged to belong to the same cluster. To test the performance of the proposed STICC algorithm, we apply it in two use cases. The comparison results with several baseline methods show that the STICC outperforms others significantly in terms of adjusted rand index and macro-F1 score. Join count statistics is also calculated and shows that the spatial contiguity is well preserved by STICC. Such a spatial clustering method may benefit various applications in the fields of geography, remote sensing, transportation, and urban planning, etc. Numéro de notice : A2022-591 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2053980 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2053980 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101282
in International journal of geographical information science IJGIS > vol 36 n° 8 (August 2022) . - pp 1518 - 1549[article]