Détail de l'auteur
Auteur Fahime Arabi Aliabad |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 / Fahime Arabi Aliabad in Remote sensing, vol 14 n° 13 (July-1 2022)
[article]
Titre : Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 Type de document : Article/Communication Auteurs : Fahime Arabi Aliabad, Auteur ; Hamid Reza Ghafarian Malamiri, Auteur ; Saeed Shojaei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 3227 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification orientée objet
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image captée par drone
[Termes IGN] image Sentinel-MSI
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method. Numéro de notice : A2022-572 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.3390/rs14133227 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133227 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101288
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3227[article]