Détail de l'auteur
Auteur Andrea Gaspa |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiscale assimilation of Sentinel and Landsat data for soil moisture and Leaf Area Index predictions using an ensemble-Kalman-filter-based assimilation approach in a heterogeneous ecosystem / Nicola Montaldo in Remote sensing, vol 14 n° 14 (July-2 2022)
[article]
Titre : Multiscale assimilation of Sentinel and Landsat data for soil moisture and Leaf Area Index predictions using an ensemble-Kalman-filter-based assimilation approach in a heterogeneous ecosystem Type de document : Article/Communication Auteurs : Nicola Montaldo, Auteur ; Andrea Gaspa, Auteur ; Roberto Corona, Auteur Année de publication : 2022 Article en page(s) : n° 3458 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] assimilation des données
[Termes IGN] bassin méditerranéen
[Termes IGN] écosystème
[Termes IGN] filtre de Kalman
[Termes IGN] humidité du sol
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Leaf Area Index
[Termes IGN] modèle dynamique
[Termes IGN] modèle hydrographique
[Termes IGN] Sardaigne
[Termes IGN] zone semi-arideRésumé : (auteur) Data assimilation techniques allow researchers to optimally merge remote sensing observations in ecohydrological models, guiding them for improving land surface fluxes predictions. Presently, freely available remote sensing products, such as those of Sentinel 1 radar, Landsat 8 sensors, and Sentinel 2 sensors, allow the monitoring of land surface variables (e.g., radar backscatter for soil moisture and the normalized difference vegetation index (NDVI) and for leaf area index (LAI)) at unprecedentedly high spatial and time resolutions, appropriate for heterogeneous ecosystems, typical of semiarid ecosystems characterized by contrasting vegetation components (grass and trees) competing for water use. A multiscale assimilation approach that assimilates radar backscatter and grass and tree NDVI in a coupled vegetation dynamic–land surface model is proposed. It is based on the ensemble Kalman filter (EnKF), and it is not limited to assimilating remote sensing data for model predictions, but it uses assimilated data for dynamically updating key model parameters (the ENKFdc approach), including saturated hydraulic conductivity and grass and tree maintenance respiration coefficients, which are highly sensitive parameters of soil–water balance and biomass budget models, respectively. The proposed EnKFdc assimilation approach facilitated good predictions of soil moisture, grass, and tree LAI in a heterogeneous ecosystem in Sardinia for a 3-year period with contrasting hydrometeorological (dry vs. wet) conditions. Contrary to the EnKF-based approach, the proposed EnKFdc approach performed well for the full range of hydrometeorological conditions and parameters, even assuming extremely biased model conditions with very high or low parameter values compared with the calibrated (“true”) values. The EnKFdc approach is crucial for soil moisture and LAI predictions in winter and spring, key seasons for water resources management in Mediterranean water-limited ecosystems. The use of ENKFdc also enabled us to predict evapotranspiration and carbon flux well, with errors of less than 4% and 15%, respectively; such results were obtained even with extremely biased initial model conditions. Numéro de notice : A2022-574 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14143458 En ligne : https://doi.org/10.3390/rs14143458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101293
in Remote sensing > vol 14 n° 14 (July-2 2022) . - n° 3458[article]