Détail de l'auteur
Auteur Anne Verroust-Blondet |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
3D semantic scene completion: A survey / Luis Roldão in International journal of computer vision, vol 130 n° 8 (August 2022)
[article]
Titre : 3D semantic scene completion: A survey Type de document : Article/Communication Auteurs : Luis Roldão, Auteur ; Raoul de Charette, Auteur ; Anne Verroust-Blondet, Auteur Année de publication : 2022 Article en page(s) : pp 1978 - 2005 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] effet de profondeur cinétique
[Termes IGN] image RVB
[Termes IGN] reconstruction d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Semantic scene completion (SSC) aims to jointly estimate the complete geometry and semantics of a scene, assuming partial sparse input. In the last years following the multiplication of large-scale 3D datasets, SSC has gained significant momentum in the research community because it holds unresolved challenges. Specifically, SSC lies in the ambiguous completion of large unobserved areas and the weak supervision signal of the ground truth. This led to a substantially increasing number of papers on the matter. This survey aims to identify, compare and analyze the techniques providing a critical analysis of the SSC literature on both methods and datasets. Throughout the paper, we provide an in-depth analysis of the existing works covering all choices made by the authors while highlighting the remaining avenues of research. SSC performance of the SoA on the most popular datasets is also evaluated and analyzed. Numéro de notice : A2022-593 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-021-01504-5 Date de publication en ligne : 06/06/2022 En ligne : http://dx.doi.org/10.1007/s11263-021-01504-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101296
in International journal of computer vision > vol 130 n° 8 (August 2022) . - pp 1978 - 2005[article]