Détail de l'auteur
Auteur Saeideh Sahebi Vayghan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data Type de document : Article/Communication Auteurs : Saeideh Sahebi Vayghan, Auteur ; Mohammad Salmani, Auteur ; Neda Ghasemkhanic, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2967 - 2995 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme génétique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'arbres
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] image aérienne
[Termes IGN] image optique
[Termes IGN] Inférence floue
[Termes IGN] morphologie mathématiqueRésumé : (auteur) One of the most important considerations in urban environments is the extraction of urban objects, with a high automation level. This study aims to present a new method which uses aerial images and LiDAR data to extract buildings and trees footprint in urban areas. In this study, high-elevation objects were extracted from the LiDAR data using the developed scan labeling method, and then the classification methods of Neural Networks (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Based K-Means algorithm (GBKMs) were used to separate buildings and trees and with the purpose of evaluating their performance. The features used for the classification were extracted from aerial images and LiDAR data, and the training data for the classification were selected automatically. Mathematical morphology functions were also used to process the classification results. The results show that NN and the ANFIS are more effective than the genetic-based K-Means algorithm in detecting small and large buildings. Numéro de notice : A2022-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1844311 En ligne : https://doi.org/10.1080/10106049.2020.1844311 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101300
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2967 - 2995[article]