Détail de l'auteur
Auteur Mahmoud Mohamed |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier / Mahmoud Mohamed in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier Type de document : Article/Communication Auteurs : Mahmoud Mohamed, Auteur ; Salem Morsy, Auteur ; Adel El-Shazly, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] zone urbaineMots-clés libres : cylindrical neighbourhood = voisinage cylindrique Résumé : (auteur) 3D road mapping is essential for intelligent transportation system in smart cities. Road environment receives its data from mobile laser scanning (MLS) systems in the format of LiDAR point clouds, which are distinguished with their accuracy and high density. In this paper, a mobile LiDAR data classification method based on machine learning (ML) is presented. First, data subsampling and slicing are applied, followed by cylindrical neighbourhood selection method to determine the neighbourhood of each point. Second, a new LiDAR-based point feature namely Zmodis introduced, and used along with existing fifteen geometric features as input for a ML algorithm. Finally, Random Forest classifier is applied to a part of (Paris-Lille-3D) MLS point clouds belonging to NPM3D Benchmark. The dataset is about 1.5 km long road in Lille, France with more than 98 million points. The use of Zmod improved the accuracy from 90.26% to 95.23% and achieved sufficient results for classes with low points' portion in the dataset. In addition, the Zmod is the third important feature in the classification process among the sixteen features with about 14.63%. Moreover, using the first six important features achieved almost the maximum overall accuracy with about 60% reduction in the processing time. Numéro de notice : A2022-622 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2102218 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2102218 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101357
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]