Détail de l'auteur
Auteur Nor Aizam Adnan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique / Syaza Rozali in Geocarto international, vol 37 n° 11 ([15/06/2022])
[article]
Titre : Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique Type de document : Article/Communication Auteurs : Syaza Rozali, Auteur ; Zulkiflee Abd Latif, Auteur ; Nor Aizam Adnan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3247 - 3264 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] MalaisieRésumé : (auteur) The study involves an object-based segmentation method to extract feature changes in tropical rainforest cover using Landsat image and airborne LiDAR (ALS). Disturbance event that are represents the changes are examined by the classification of multisensor data; that is a highly accurate ALS with different resolutions of multispectral Landsat image. Disturbance Index (DI) derived from Tasseled Cap Transformation, Normalized Difference Vegetation Index (NDVI), and the ALS height are the variables for object-based segmentation process. The classification is categorized into two classes; disturbed and non-disturbed forest cover using Nearest Neighbor (NN), Random Forest (RF) and Support Vector Machine (SVM). The overall accuracy ranging from 88% to 96% and kappa ranging from 0.79 to 0.91. Mcnemar’s test p-value ( Numéro de notice : A2022-586 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1852610 Date de publication en ligne : 27/12/2020 En ligne : https://doi.org/10.1080/10106049.2020.1852610 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101360
in Geocarto international > vol 37 n° 11 [15/06/2022] . - pp 3247 - 3264[article]