Détail de l'auteur
Auteur Gensheng Hu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detection of diseased pine trees in unmanned aerial vehicle images by using deep convolutional neural networks / Gensheng Hu in Geocarto international, vol 37 n° 12 ([01/07/2022])
[article]
Titre : Detection of diseased pine trees in unmanned aerial vehicle images by using deep convolutional neural networks Type de document : Article/Communication Auteurs : Gensheng Hu, Auteur ; Yanqiu Zhu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3520 - 3539 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] Pinus (genre)
[Termes IGN] santé des forêtsRésumé : (auteur) This study presents a method that uses high-resolution remote sensing images collected by an unmanned aerial vehicle (UAV) and combines MobileNet and Faster R-CNN for detecting diseased pine trees. MobileNet is used to remove backgrounds to reduce the interference of background information. Faster R-CNN is adopted to distinguish between diseased and healthy pine trees. The number of training samples is expanded due to the insufficient number of available UAV images. Experimental results show that the proposed method is better than traditional machine learning approaches, such as support vector machine and AdaBoost, and methods of DCNN, such as Alexnet, Inception and Faster R-CNN. Through sample expansion and background removal, the proposed method achieves effective detection of diseased pine trees in UAV images by using deep learning technology. Numéro de notice : A2022-588 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1864025 Date de publication en ligne : 06/01/2021 En ligne : https://doi.org/10.1080/10106049.2020.1864025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101362
in Geocarto international > vol 37 n° 12 [01/07/2022] . - pp 3520 - 3539[article]