Détail de l'auteur
Auteur Sun Hongxing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
PS-InSAR based validated landslide susceptibility modelling: a case study of Ghizer valley, Northern Pakistan / Sajid Hussain in Geocarto international, vol 37 n° 13 ([15/07/2022])
[article]
Titre : PS-InSAR based validated landslide susceptibility modelling: a case study of Ghizer valley, Northern Pakistan Type de document : Article/Communication Auteurs : Sajid Hussain, Auteur ; Sun Hongxing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3941 - 3962 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] aléa
[Termes IGN] effondrement de terrain
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] PakistanRésumé : (auteur) Northern Pakistan is a rugged mountainous area that is seismically active, high gradients, disintegrated lithology, and glaciers in the high peaks. District Ghizer lies among the most vulnerable areas and experience landslides every year due to different causative factors. This study has carried out to prepare a detailed landslide inventory and to develop a susceptibility model for the area. The most followed and probabilistic approach, Frequency Ratio (FR) model and a semi-qualitative Analytical Hierarchy Process (AHP) approach were applied to find the correlation between causative factors and mapped landslides. Persistent Scatterer Interferometry (PSI) Interferometric Synthetic Aperture Radar (InSAR) technique was applied to check deformation movement in the susceptible zones of extracted models, which showed the high Line of Sight (LOS) deformation velocity in high susceptible zones of both models. The extracted Landslide Susceptibility Index (LSI) models showed 82.82% and 73.43% of prediction accuracy for FR and AHP method calculated by Area Under Curve (AUC) of Receiver operating characteristic (ROC) method. The models revealed Slope, barrenness, and Geology are the main causative factors of landslide activities in the study area. Finally, both Landslide susceptibility index maps were classified into five susceptibility classes. As the study area is very prone to landslide disasters so these susceptibility models will be helpful to delineate hazardous zones for the medication of future landslides disasters in the area as well as it can be used as a tool in the planning strategies by decision-makers in development projects in the area. Numéro de notice : A2022-589 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1870165 Date de publication en ligne : 11/02/2021 En ligne : https://doi.org/10.1080/10106049.2020.1870165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101363
in Geocarto international > vol 37 n° 13 [15/07/2022] . - pp 3941 - 3962[article]