Détail de l'auteur
Auteur Yonghua Qu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Smartphone digital photography for fractional vegetation cover estimation / Gaofei Yin in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)
[article]
Titre : Smartphone digital photography for fractional vegetation cover estimation Type de document : Article/Communication Auteurs : Gaofei Yin, Auteur ; Yonghua Qu, Auteur ; Aleixandre Verger, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 303 - 310 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] champ visuel
[Termes IGN] couvert végétal
[Termes IGN] erreur moyenne quadratique
[Termes IGN] forêt alpestre
[Termes IGN] image à haute résolution
[Termes IGN] image hémisphérique
[Termes IGN] objectif grand angulaire
[Termes IGN] téléphone intelligentRésumé : (Auteur) Accurate ground measurements of fractional vegetation cover (FVC) are key for characterizing ecosystem functions and evaluating remote sensing products. The increasing performance of cameras equipped in smartphones opens new opportunities for extensive FVC measurement through citizen science initiatives. However, the wide field of view (FOV) of smartphone cameras constitutes a key source of uncertainty in the estimation of vegetation parameters, which has been largely ignored. We designed a practical method to characterize the FOV of smartphones and improve the FVC estimation. The method was assessed in a mountainous forest based on the comparison with in situ fisheye photographs. After the FOV correction, the agreement of smart-phone and fisheye FVC estimates highly improved: root-mean-square error (RMSE) of 0.103 compared to 0.242 of the original smartphone FVC estimates without considering the FOV effect, mean difference of 0.074 versus 0.213, and coefficient of determination R 2 of 0.719 versus 0.353. Smartphone cameras outperform traditional fisheye cameras: the overexposure and low vertical resolution of fisheye photographs introduced uncertainties in FVCestimation while the insensitivity to exposure and high spatial resolution of smartphone cameras make photograph acquisition and analysis more automatic and accurate. The smartphone FVCestimates highly agree with the GF-1 satellite product: RMSE = 0.066, bias = 0.007, and R 2 = 0.745. This study opens new perspectives for the validation of satellite products. Numéro de notice : A2022-527 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00038R2 Date de publication en ligne : 01/05/2022 En ligne : https://doi.org/10.14358/PERS.21-00038R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101375
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 5 (May 2022) . - pp 303 - 310[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 105-2022052 SL Revue Centre de documentation Revues en salle Disponible 105-2022051 SL Revue Centre de documentation Revues en salle Disponible