Détail de l'auteur
Auteur A. Marcela Suarez |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management / A. Marcela Suarez in Cartography and Geographic Information Science, Vol 49 n° 5 (September 2022)
[article]
Titre : A geographical and content-based approach to prioritize relevant and reliable tweets for emergency management Type de document : Article/Communication Auteurs : A. Marcela Suarez, Auteur ; Keith C. Clarke, Auteur Année de publication : 2022 Article en page(s) : pp 443 - 463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] classement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] fiabilité des données
[Termes IGN] filtrage d'information
[Termes IGN] gestion de crise
[Termes IGN] pertinence
[Termes IGN] qualité des données
[Termes IGN] secours d'urgence
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Tweets posted by the general public during disaster events represent timely, up-to-date, and on-site data that may be useful for emergency responders. However, since Twitter data has been deemed to be unverifiable and untrustworthy, it is challenging to identify those reliable and relevant tweets that can inform emergency response operations. Although computational methods exist both to classify overwhelming amounts of tweets and to filter those relevant to emergency response, using contextual geographic information regarding the disaster event to filter tweets has been overlooked. We review the existing research on the quality of data contributed by the general public from a geographical perspective, and then propose an approach to prioritize tweets for emergency response based on their relevance and reliability. The novelty of the approach is twofold: a) the use of both authoritative data such as hazard-related information and on-the-ground reports provided by weather spotters and validated by the National Weather Service; and b) the fact that it leverages tweets content as well as their geographical context and location. Using Hurricane Harvey in 2017 as a case study, results show that by following the proposed approach 79% of tweets sent from post-identified flooded areas were classified as of high or medium relevance and reliability. This suggests that the proposed approach can provide an accurate prioritization of tweets to be used for real time emergency management. Numéro de notice : A2022-633 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2081257 En ligne : https://doi.org/10.1080/15230406.2022.2081257 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101399
in Cartography and Geographic Information Science > Vol 49 n° 5 (September 2022) . - pp 443 - 463[article]