Détail de l'auteur
Auteur Petr Dokladal |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Unsupervised vision methods based on image perceptual information Type de document : Thèse/HDR Auteurs : Eric Bazan, Auteur ; Petr Dokladal, Directeur de thèse ; Eva Dokladalova, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2021 Importance : 227 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l'Université Paris Sciences et Lettres, Préparée à MINES ParisTech, spécialité Morphologie MathématiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] compréhension de l'image
[Termes IGN] contour
[Termes IGN] couleur (variable spectrale)
[Termes IGN] décomposition spectrale
[Termes IGN] filtre de Gabor
[Termes IGN] image captée par drone
[Termes IGN] segmentation d'image
[Termes IGN] texture d'image
[Termes IGN] visionIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis work deals with extracting features and low-level primitives from perceptual image information to understand scenes. Motivated by the needs and problems in Unmanned Aerial Vehicles (UAVs) vision based navigation, we propose novel methods focusing on image understanding problems. This work explores three main pieces of information in an image: intensity, color, and texture. In the first chapter of the manuscript, we work with the intensity information through image contours. We combine this information with human perception concepts, such as the Helmholtz principle and the Gestalt laws, to propose an unsupervised framework for object detection and identification. We validate this methodology in the last stage of the drone navigation, just before the landing. In the following chapters of the manuscript, we explore the color and texture information contained in the images. First, we present an analysis of color and texture as global distributions of an image. This approach leads us to study the Optimal Transport theory and its properties as a true metric for color and texture distributions comparison. We review and compare the most popular similarity measures between distributions to show the importance of a metric with the correct properties such as non-negativity and symmetry. We validate such concepts in two image retrieval systems based on the similarity of color distribution and texture energy distribution. Finally, we build an image representation that exploits the relationship between color and texture information. The image representation results from the image’s spectral decomposition, which we obtain by the convolution with a family of Gabor filters. We present in detail the improvements to the Gabor filter and the properties of the complex color spaces. We validate our methodology with a series of segmentation and boundary detection algorithms based on the computed perceptual feature space. Numéro de notice : 15285 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Morphologie Mathématique : Paris Sciences et Lettres : 2021 Organisme de stage : Centre de Morphologie Mathématique DOI : sans En ligne : https://hal.science/tel-03690309 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101418