Détail de l'auteur
Auteur Ruijing Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using attributes explicitly reflecting user preference in a self-attention network for next POI recommendation / Ruijing Li in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
[article]
Titre : Using attributes explicitly reflecting user preference in a self-attention network for next POI recommendation Type de document : Article/Communication Auteurs : Ruijing Li, Auteur ; Jianzhong Guo, Auteur ; Chun Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 440 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] distance
[Termes IGN] filtrage d'information
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] point d'intérêt
[Termes IGN] réseau social géodépendant
[Termes IGN] Tokyo (Japon)Résumé : (auteur) With the popularity of location-based social networks such as Weibo and Twitter, there are many records of points of interest (POIs) showing when and where people have visited certain locations. From these records, next POI recommendation suggests the next POI that a target user might want to visit based on their check-in history and current spatio-temporal context. Current next POI recommendation methods mainly apply different deep learning models to capture user preferences by learning the nonlinear relations between POIs and user preference and pay little attention to mining or using the information that explicitly reflects user preference. In contrast, this paper proposes to utilize data that explicitly reflect user preference and include these data in a deep learning-based process to better capture user preference. Based on the self-attention network, this paper utilizes the attributes of the month of the check-ins and the categories of check-ins during this time, which indicate the periodicity of the user’s work and life and can reflect the habits of users. Moreover, considering that distance has a significant impact on a user’s decision of whether to visit a POI, we used a filter to remove candidate POIs that were more than a certain distance away when recommending the next POIs. We use check-in data from New York City (NYC) and Tokyo (TKY) as datasets, and experiments show that these improvements improve the recommended performance of the next POI. Compared with the state-of-the-art methods, the proposed method improved the recall rate by 7.32% on average. Numéro de notice : A2022-647 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080440 Date de publication en ligne : 04/08/2022 En ligne : https://doi.org/10.3390/ijgi11080440 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101463
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 440[article]