Détail de l'auteur
Auteur Alireza Vafaeinejad |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway Type de document : Article/Communication Auteurs : Reza Sanayeia, Auteur ; Alireza Vafaeinejad, Auteur ; Jalal Karami, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4141 - 4157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accident de la route
[Termes IGN] autocorrélation
[Termes IGN] autoroute
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Téhéran
[Termes IGN] transformation en ondelettesRésumé : (auteur) The aim of this study is to develop a model to predict temporal daily collision by integrating of Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms. As a case study, the integrated model was tested on 1097 daily traffic collisions data of Karaj-Qazvin freeway from 2009 to 2013 and the results were compared with the conventional ANN prediction model. In this method, initially, the raw collision data were analyzed, normalized, and classified via Geographical Information System (GIS). Partial Autocorrelation Function (PACF) was also utilized to evaluate the temporal autocorrelation for consecutive existing daily data. The results of this study showed that the proposed integrated DWT-ANN method provided higher predictive accuracy in daily traffic collision than ANN model by increasing coefficient of determination (R2) from 0.66 to 0.82. Numéro de notice : A2022-650 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1871669 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/10106049.2021.1871669 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101472
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4141 - 4157[article]