Détail de l'auteur
Auteur Ruixing Xing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Segmentation and sampling method for complex polyline generalization based on a generative adversarial network / Jiawei Du in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : Segmentation and sampling method for complex polyline generalization based on a generative adversarial network Type de document : Article/Communication Auteurs : Jiawei Du ; Fang Wu, Auteur ; Ruixing Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4158 - 4180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] échantillonnage de données
[Termes IGN] implémentation (informatique)
[Termes IGN] polyligne
[Termes IGN] rastérisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This paper focuses on learning complex polyline generalization. First, the requirements for sampled images to ensure the effective learning of complex polyline generalization are analysed. To meet these requirements, new methods for segmenting complex polylines and sampling images are proposed. Second, using the proposed segmentation and sampling method, a use case for the learning of complex polyline generalization using the generative adversarial network model, Pix2Pix, is developed. Third, this use case is applied experimentally for the complex generalization of coastline data from a scale of 1:50,000 to 1:250,000. Additionally, contrast experiments are conducted to compare the proposed segmentation and sampling method with object-based and traditional fixed-size methods. Experimental results show that the images generated using the proposed method are superior to the other two methods in the learning and application of complex polyline generalization. The results generalized for the developed use case are globally reasonable and suitably accurate. Numéro de notice : A2022-651 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1878288 Date de publication en ligne : 09/02/2021 En ligne : https://doi.org/10.1080/10106049.2021.1878288 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101473
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4158 - 4180[article]