Détail de l'auteur
Auteur Hsiuhan Lexie Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Active-metric learning for classification of remotely sensed hyperspectral images / Edoardo Pasolli in IEEE Transactions on geoscience and remote sensing, vol 54 n° 4 (April 2016)
[article]
Titre : Active-metric learning for classification of remotely sensed hyperspectral images Type de document : Article/Communication Auteurs : Edoardo Pasolli, Auteur ; Hsiuhan Lexie Yang, Auteur ; Melba M. Crawford, Auteur Année de publication : 2016 Article en page(s) : pp 1925 - 1939 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiquesRésumé : (Auteur) Classification of remotely sensed hyperspectral images via supervised approaches is typically affected by high dimensionality of the spectral data and a limited number of labeled samples. Dimensionality reduction via feature extraction and active learning (AL) are two approaches that researchers have investigated independently to deal with these two problems. In this paper, we propose a new method in which the feature extraction and AL steps are combined into a unique framework. The idea is to learn and update a reduced feature space in a supervised way at each iteration of the AL process, thus taking advantage of the increasing labeled information provided by the user. In particular, the computation of the reduced feature space is based on the large-margin nearest neighbor (LMNN) metric learning principle. This strategy is applied in conjunction with k-nearest neighbor ( k-NN) classification, for which a new sample selection strategy is proposed. The methodology is validated experimentally on four benchmark hyperspectral data sets. Good improvements in terms of classification accuracy and computational time are achieved with respect to the state-of-the-art strategies that do not combine feature extraction and AL. Numéro de notice : A2016-836 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2490482 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2490482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82880
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 4 (April 2016) . - pp 1925 - 1939[article]