Détail de l'auteur
Auteur Qingchun Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)
[article]
Titre : Spatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding Type de document : Article/Communication Auteurs : Faxi Yuan, Auteur ; Yuanchang Xu, Auteur ; Qingchun Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101870 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] catastrophe naturelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] graphe
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] polynôme de Chebysheff
[Termes IGN] prévention des risques
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] zone urbaineRésumé : (auteur) The objective of this study is to predict the near-future flooding status of road segments based on their own and adjacent road segments' current status through the use of deep learning framework on fine-grained traffic data. Predictive flood monitoring for situational awareness of road network status plays a critical role to support crisis response activities such as evaluation of the loss of access to hospitals and shelters. Existing studies related to near-future prediction of road network flooding status at road segment level are missing. Using fine-grained traffic speed data related to road sections, this study designed and implemented three spatio-temporal graph convolutional network (STGCN) models to predict road network status during flood events at the road segment level in the context of the 2017 hurricane Harvey in Harris County (Texas, USA). Model 1 consists of two spatio-temporal blocks considering the adjacency and distance between road segments, while model 2 contains an additional elevation block to account for elevation difference between road segments. Model 3 includes three blocks for considering the adjacency and the product of distance and elevation difference between road segments. The analysis tested the STGCN models and evaluated their prediction performance. Our results indicated that model 1 and model 2 have reliable and accurate performance for predicting road network flooding status in near future (e.g., 2–4 h) with model precision and recall values larger than 98% and 96%, respectively. With reliable road network status predictions in floods, the proposed model can benefit affected communities to avoid flooded roads and the emergency management agencies to implement evacuation and relief resource delivery plans. Numéro de notice : A2022-656 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101870 Date de publication en ligne : 22/08/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101870 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101506
in Computers, Environment and Urban Systems > vol 97 (October 2022) . - n° 101870[article]