Détail de l'auteur
Auteur Fengjun Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images / Zhiyong Lv in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
[article]
Titre : Spatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images Type de document : Article/Communication Auteurs : Zhiyong Lv, Auteur ; Fengjun Wang, Auteur ; Guoqing Cui, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4412712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de changement
[Termes IGN] image Landsat-TM
[Termes IGN] jeu de données
[Termes IGN] occupation du sol
[Termes IGN] prévention des risques
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change in the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this article, we design a novel neural network with a spatial–spectral attention mechanism and multiscale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth’s surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of ten quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement of about 0.08%–14.87% in terms of overall accuracy (OA) for Dataset-A. Numéro de notice : A2022-660 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3197901 Date de publication en ligne : 17/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3197901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101516
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 4412712[article]