Détail de l'auteur
Auteur Preetam Ghosh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral unmixing using transformer network / Preetam Ghosh in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
[article]
Titre : Hyperspectral unmixing using transformer network Type de document : Article/Communication Auteurs : Preetam Ghosh, Auteur ; Swalpa Kumar Roy, Auteur ; Bikram Koirala, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5535116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectraleRésumé : (auteur) Transformers have intrigued the vision research community with their state-of-the-art performance in natural language processing. With their superior performance, transformers have found their way into the field of hyperspectral image classification and achieved promising results. In this article, we harness the power of transformers to conquer the task of hyperspectral unmixing and propose a novel deep neural network-based unmixing model with transformers. A transformer network captures nonlocal feature dependencies by interactions between image patches, which are not employed in convolutional neural network (CNN) models, and hereby has the ability to enhance the quality of the endmember spectra and the abundance maps. The proposed model is a combination of a convolutional autoencoder and a transformer. The hyperspectral data is encoded by the convolutional encoder. The transformer captures long-range dependencies between the representations derived from the encoder. The data are reconstructed using a convolutional decoder. We applied the proposed unmixing model to three widely used unmixing datasets, that is, Samson, Apex, and Washington DC Mall, and compared it with the state-of-the-art in terms of root mean squared error and spectral angle distance. The source code for the proposed model will be made publicly available at https://github.com/preetam22n/DeepTrans-HSU . Numéro de notice : A2022-662 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3196057 Date de publication en ligne : 03/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3196057 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101518
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 5535116[article]