Détail de l'auteur
Auteur Sk Ajim Ali |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach / Quoc Bao Pham in Natural Hazards, vol 113 n° 2 (September 2022)
[article]
Titre : Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach Type de document : Article/Communication Auteurs : Quoc Bao Pham, Auteur ; Sk Ajim Ali, Auteur ; Elzbieta Bielecka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1043 - 1081 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Varsovie (Pologne)
[Termes IGN] vulnérabilité
[Termes IGN] zone urbaine denseRésumé : (auteur) Advances in the availability of multi-sensor, remote sensing-derived datasets, and machine learning algorithms can now provide an unprecedented possibility to predict flood events and risk. Therefore, this study was undertaken to develop a flood vulnerability map and to assess the exposure of buildings to flood risk in Warsaw, the capital of Poland. This goal was pursued in four research phases. The thirteen flood predictors were evaluated using information gain ratio (IGR), and finally reduced to eight of the most causative ones and used for flood vulnerability mapping with three machine learning algorithms, Artificial Neural Network Multi-Layer Perceptron (ANN/MLP), Deep Learning Neural Network based approach—DL4j (DLNN-DL4j) and Bayesian Logistic Regression (BLR). These algorithms show a good predictive performance with the receiver operating curve (ROC) value of 0.851, 0.877 and 0.697, respectively. The buildings’ exposure to flood was assessed in line with criteria established in European and national legal regulations. The introduced new buildings' flood hazard index (BFH) revealed a significant similarity of potential flood risk for both models, highlighting the greatest risk in zones with high vulnerability to flooding. Depending on the method used, the BFH value was 0.54 (ANN), 0.52 (DLNNs) or 0.64 (BLR). The holistic approach proposed in this study could assist local authorities in improving flood management. Numéro de notice : A2022-705 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s11069-022-05336-5 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1007/s11069-022-05336-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101569
in Natural Hazards > vol 113 n° 2 (September 2022) . - pp 1043 - 1081[article]